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Abstract. A new oscillator neural network is proposed on the basis of a system of coupled
complex Ginzburg–Landau equations (Uchiyama S and Fujisaka H 1997Phys. Rev.E 56 99). It
is shown that this network can retrieve fixed-point attractors, and has an excellent mathematical
tractability (just as the Hopfield model) although the system has no Lyapunov function. We use self-
consistent signal-to-noise analysis instead of the replica method to investigate the storage capacity,
and demonstrate the usefulness of the present approach to the neural network exhibiting complex
dynamical behaviours.

1. Introduction

Many theoretical studies have been carried out in the neural networks consisting of oscillators
[1,2], as well as in the networks of eitherXY spins or Heisenberg spins [3–5]. Recent neuro-
physiological experiments reveal the possibility that the information coded in the collective
activities of neurones is described by oscillatory phenomena [6–8]. Therefore, it is quite
natural to use an oscillatory element in composing a model to study such a characteristic of
the neural network. Fruitful results with coupled oscillators in the last decade also encouraged
research of the oscillator neural network.

Theoretical studies of the oscillator neural network commenced by using anXY spin
model [9–11]. In that case, the system has a Lyapunov function. Each of the fixed-point
attractors embedded in the system accurately corresponds to a minimum of the Lyapunov
function, and the system evolves such that the function decreases monotonically. This property
enables one to use the replica method [12], and gives the exact analytical prediction in the limit
of the infinite system size,N → ∞. There are variants of the above model, e.g.XY spins
with native (site-dependent) frequencies, diluted couplings, slow dynamic couplings, and so
on [13–16]. Moreover, there exist some theoretical models constructed with phase oscillator
elements [1, 2], all of which are comprehensible by ordinary statistical-mechanical theories,
assuming the existence of a Lyapunov function or something similar.

Conversely, many numerical studies have probed the complex dynamics peculiar to
oscillatory systems without a Lyapunov function. Some interesting dynamical phenomena
have been reported, e.g. sequential retrieval, chaotic itinerancy among patterns, and so on. We
emphasize, however, the difficulty of analytically understanding such systems with the use of
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the conventional theory of statistical mechanics, because the theory requires the existence of a
Lyapunov function and, moreover, these systems are generally described by quite complicated
equations.

In order to conquer these difficulties we use the phase reduction method developed by
eliminating the amplitude variable [17]. This is based on the approach developed in [18, 19]
and gives a useful method to study the long-time dynamics of the coupled oscillator system.
In the case of the global coupling term, we have numerically demonstrated the qualitative
equivalence between the dynamical property of the original system [20, 21] and that of the
reduced system [17]. For example, taking the complex Ginzburg–Landau (GL) equation as an
element, we then construct an oscillator neural network [22] as

Ẇ (j) = (1 + ic)W(j) − (1 + ic)|W(j)|2W(j) +
1

N

N∑
k=1

Djk(W
(j),W(k))

(j = 1, . . . , N). (1.1)

Here,W(j) is the complex physical variable at the site numberj , and the parameterc is a
real number. The third term in (1.1) stands for the random coupling term. If we neglect
this term, each uncoupled equation has a normal form of the Hopf bifurcation. Therefore,
c 6= 0 generates the spontaneous oscillation of elements. One may consider how to embed a
number of attractors in the above system, and, if that is possible, how to predict its property
analytically; however, equation (1.1) would lead to the difficulty of these problems. With the
help of this phase reduction method, the system can be reduced to a quite simple one, and
acquires mathematical tractability.

The goal of this paper is to analytically investigate the property of the mapping model
derived from (1.1) by the reduction method. As mentioned above, there are models that are
exactly solved by statistical mechanics, and those that show complex dynamics in numerical
simulations. The present model has both characteristics.

This paper is organized as follows. In section 2, we propose a model, and briefly discuss its
fundamental characteristics. The aim of this paper and its significance are given in section 3. In
section 4, we explain self-consistent signal-to-noise analysis (SCSNA), an analytical method
for the neural network that does not necessarily have a Lyapunov function. In section 5, we
show the results of both numerical simulation and SCSNA. The results indicate the usefulness
of SCSNA in the parameter region of small loading rate and weak nonlinearity. We summarize
this paper with some remarks and conclusions in section 6.

2. Model

Let us consider a neural network system consisting ofN identical oscillatory elements. We
especially deal with a map element described by a phase variableθn (−π 6 θn < π ). Here the
indexn = 1, 2, . . . denotes a discrete time step. We suppose that, for example, the oscillator
is at the firing when it passes acrossθ = 0. Then we make the coupled map system of these
oscillators, in which a variety of the firing pattern can be exhibited.

2.1. Model

In [17], we derived an oscillator neural network composed ofN identical maps based on the
coupled complex GL equations (1.1) by eliminating the amplitude variable. We call this model
theGL map neural network. Each element of the system is simultaneously updated from the
time stepn to n + 1 according to

eiθ(j)n+1 = f (h(j)n , h(j)∗n ) (2.1a)
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h(j)n =
N∑
k=1

Jjke
iθ(k)n (j = 1, . . . , N) (2.1b)

f (h, h∗) = h|h|−1−ic. (2.1c)

The complex variableh(j)n is the local field acting on the sitej . Under its action, the phase
variableθ(j)n of thej th oscillator is updated toθ(j)n+1 by the transfer functionf ( ). Subsequently,

h
(j)
n is produced by summing the outputs eiθ(k)n weighted byJjk. This procedure is repeated.

Let us consider embeddingp = αN random phase patterns,φ1 . . . ,φp, into Jjk
such that each of them becomes an approximate fixed-point of the dynamics ofθn(=
Col.(θ (1)n , . . . , θ (N)n )). To this end, we can expressJjk with the generalized Hebb rule [9, 10]
as

Jjk = 1

N

p∑
µ=1

exp[i(φ(j)µ − φ(k)µ )] (j, k = 1, . . . , N). (2.2)

We choose the embedded patterns to be random and uniformly distributed in the interval
−π 6 φ < π . One readily finds that the dynamics (2.1) and the particular form of the
coupling (2.2) are straightforward extensions of the Hopfield model to the oscillator network.

2.2. Characteristics of the present model

We point out how the transfer function illustrates the characteristics of the model. First, it is
important to show that the transfer function has the two properties,

f (eiθh, e−iθh∗) = eiθf (h, h∗) (2.3)

f (eiθ , c.c.) = eiθ . (2.4)

Equation (2.3) tells us that the system remains invariant under the rotation of its framework
(rotation symmetry). In other words, (2.1) is never influenced by the simultaneous
transformation of all phases

θ(j)n → θ(j)n + θ0 (j = 1, . . . , N).

Equation (2.4) indicates the set of the fixed points of the single GL map. Using this
property, we can easily explain the validity of (2.2) by signal-to-noise analysis (see appendix
A). Incidentally, we point out that only the difference between two phase variables is embedded
in (2.2). Even if we shift each phase of the random patterns simultaneously

φ(j)µ → φ(j)µ + φ0 (j = 1, . . . , N,µ = 1, . . . , p)

equation (2.2) is never changed. This means that the embedded patternsφ arbitrarily select
the origin of the framework as well as the dynamical phase variableθ .

3. Determination of retrieval region

The main aim of this paper is to investigate the dependence of the storage capacity upon the
control parameterc. The loading rateα is given byα = p/N and the storage capacityαc
is defined as the upper limit of the loading rate. Thus, forα 6 αc, the system is capable
of retrieving thep ( = αN) embedded patterns as long as the system sizeN is sufficiently
large. Forα > αc, it is generally known that the overloading results in the collapse of all the
embedded patterns.
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The overlap of the system with a patternµ

mµn =
1

N

N∑
j=1

exp[i(−φ(j)µ + θ(j)n )] (3.1)

is useful to characterize the state of the system. If the system stays in the state such as
|mµ| = O(1) and |mν | = O(N−1/2) (ν 6= µ), the system retrieves the patternµ, and it is
said to be in aretrieval state(R). Alternatively, if |mµ| = O(N−1/2) (µ = 1, . . . , p), the
system is said to be in anon-retrieval state(N). Note that only the magnitude of the overlap is
meaningful, since the phase ofm provides no information because of the rotation symmetry of
the system. Therefore, our practical goal is to determine the storage capacityαc(c) at which|m|
is suddenly depressed. Note that we sometimes use|m| to denote, if any, the largest stationary
|mµ| amongµ = 1, . . . , p.

Now we briefly consider the Lyapunov function. Forc = 0, the system reduces to the
neural network that is constructed byXY spin elements at zero temperature. The function

En = 1
2

N∑
j,k=1

Jjk exp[i(θ(k)n − θ(j)n )]

has a lower bound, and decreases monotonically with timen. It serves as a Lyapunov
function of the system, and then enables us to adopt a statistical-mechanical method, such
as the replica method. It is evident from the Hermitian property of the matrixJ thatEn ε R.
Taking into account the existence of this function, Cook [9] derived the storage capacity
αc(c = 0) = 0.0377 by the replica method. On the other hand, the Lyapunov function would
never exist forc 6= 0. Recall that the parameterc results from the nonlinear term in the complex
GL equation. As is well known, there is no Lyapunov function for the complex GL equation.
Therefore, it is desirable to find an analytical method for when there is no Lyapunov function.

Before starting the theoretical treatment, let us show the simulation data. Figure 1 shows
some of the typical dynamics of the phase variables. We set the samep random patterns and
initial phases in both figure 1(a) and figure 1(b) so as to examine the effect ofc. In figure 1(a)
one can recognize the rapid relaxation of the system into a phase-locked pattern, becausec = 0
implies the existence of the Lyapunov function. On the other hand, the result in figure 1(b) looks
quite different from figure 1(a). After the transient, the system oscillates temporarily around
a phase-locked pattern, but this oscillation is destabilized at several sites, and that induces the
attraction of the system into the other pattern atn ' 350. We confirmed numerically that the
final state in figure 1(b) is sustained for a long time. This result suggests the emergence of a
uniform (site-independent) frequency� for c 6= 0. The frequency will be defined later as one
of the macroscopic values. In fact, its sudden change is observed atn ' 350. In figure 1(c) we
present an example of non-retrieval dynamics. Because the visualization of non-retrieval state
results generally in the random pattern with a high frequency, we set the special parameters at
which the simulation data exhibit a small� (see figure 5(b)).

Now we study the dynamics of overlaps corresponding to figure 1. The results are plotted
in figure 2. Forc = 0, despite of the effect of finite size, the overlaps relax into their fixed-point
values (figure 2(a)). In this case we can use the equilibrium theory. On the other hand, for
c 6= 0, the system has no Lyapunov function, and exhibits a kind of deterministic fluctuation
as observed in figure 2(b). This fluctuation plays a role of the annealing from the pseudo-
attractor to the true one. In figure 2(c), all the magnitude of overlaps are O(N−1/2); however,
this solution is not classified as a simple non-retrieval state because it is temporarily trapped
around a pseudo fixed point approximately 310< n < 390. Such a state is interesting, but it is
beyond the present scope of research. There may exist another non-retrieval state. Depending
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Figure 1. Dynamics of phase variables for severalc andα values. Phase variables are drawn
in greyscale. They are arranged into a line only for visualization. The data are produced by
the simulation withN = 1000, the 50 sites of which are drawn. Parameter values are (a)
c = 0.0, p = 10, (b) c = 1.5, p = 10 and (c) c = 1.5, p = 40. (b) Non-Lyapunov function
dynamics. (c) An example of a non-retrieval state

on the control parameters and the initial values, the system can settle down to a ‘normal’
non-retrieval state like the paramagnetic one. We observe that the paramagnetic state tends to
exhibit a large basin when the parameters are far from the retrieval region. Consequently, we
find that the system forc 6= 0 can exhibit a variety of complex dynamics.

4. SCSNA

SCSNA is a statistical theory to self-consistently determine overlaps and storage capacity,
developed by Shiino and Fukai. Using SCSNA, they studied the system with a non-monotonic
transfer function [23]. Okuda extended their theory to the analysis of an oscillator neural
network model [11], corresponding to ours withc = 0. He found the storage capacity
αc = 0.0377, which is equal to that obtained by Cook using the replica method. As will
be shown, SCSNA can be used even when the system under consideration has no Lyapunov
function.
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Figure 2. Dynamical behaviours of overlaps. Each overlap is calculated from the data of the
corresponding part of figure 1. Only four representative overlaps are plotted. In contrast to the
simple relaxation dynamics in (a), complicated dynamics is transiently observed in (b). The
behaviour in (c) is clearly classed as non-retrieval dynamics.

4.1. General formulation

Before going into the analysis for the transfer function (2.1c), we first give a slightly general
formulation of the complex version of SCSNA. SCSNA was originally developed as the analytic
method for fixed-point attractors. We assume that the dynamics of the system settles into the
embedded patternµ = 1:

θ(j)n ' φ(j)1 . (4.1)

The detail of the extension of SCSNA is shown in appendix B. In order to calculate the
equilibrium overlap with the first pattern, we need two auxiliary macroscopic variablesU and
q. The macroscopic equations of SCSNA are summarized as

m = 〈〈e−iφY (eiφ, ζ )〉〉 (4.2a)

U
√
αr = 〈〈ζ ∗Y (eiφ, ζ )〉〉 (4.2b)

q = 〈〈|Y (eiφ, ζ )|2〉〉. (4.2c)

Here the microscopic equation

Y (eiφ, ζ ) = f (eiφm +
√
αrζ + γ Y (eiφ, ζ ), c.c.

)
(4.2d)

and two macroscopic relations

r = q|1− U |−2 (4.2e)

γ = α

1− U (4.2f)
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are necessary to close the above equations. The average operation is performed with respect
to both the noiseζ = ξ + iη and the random patternφ:

〈〈· · ·〉〉 = 1

2π2

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

e−|ζ |
2
. . .dφ dξ dη. (4.3)

In terms of magnetism,m,U andq correspond to the magnetization, the susceptibility and the
Edward–Anderson parameter, respectively.

4.2. Adaptation to the GL network model

Hereafter we deal with the transfer function (2.1c). First we point out the extension of the
state for which SCSNA is useful. Instead of (4.1), we now consider the periodically oscillating
patternµ = 1 with a frequency�,

θ(j)n ' φ(j)µ=1 +�n + θ0 (4.4)

since the system acquires a rotational symmetry. We putθ0 = 0 without loss of generality,
and redefine the transfer function by

f�( ) ≡ e−i�f ( ).

This makes (4.4) equal to (4.1). The property (2.3) is simply modified under this extension
into

f�(e
iθh, e−iθh∗) = eiθf�(h, h

∗). (4.5)

Accordingly, replacingf ( ) in (4.2d) with f�( ), we obtain a SCSNA available for the
oscillating solution with a site-independent frequency�. Note that the identity|f�| = |f | = 1
yieldsq = 1. This fact decreases the number of the unknown SCSNA variables.

As is soon shown, the rotation symmetry simplifies the SCSNA equations. First, we note
that (4.5) with (4.2d) gives

Y (eiφ, ζ ) = eiφY (1, ζe−iφ).

In addition, the statistics of the noise is, clearly, isotropic because of its rotational symmetry.
Therefore, under the transformationζ → ζeiφ , equations (4.2a) and (4.2b) are changed into

m = 〈Y (1, ζ )〉 (4.6a)

U
√
αr = 〈ζ ∗Y (1, ζ )〉 (4.6b)

and when〈· · ·〉 stands for the average over the noiseζ = ξ + iη:

〈· · ·〉 = 1

π

∫ ∞
−∞

∫ ∞
−∞

e−|ζ |
2
. . . dξ dη.

It is worth stressing that (4.6a) and (4.6b) ensure the non-vanishing of these macroscopic
variables when averaging overφ.

Secondly, we mention that the argument of the overlap is arbitrarily chosen. From the
definition ofm, argm is not invariant under the rotation of the framework. In fact, when a
simultaneous transformation is applied

Y −→ Yei argm ζ −→ ζe−i argm

(4.6a) is changed into

|m| = 〈Y (1, ζ )〉 (4.7)

(4.6b) being unchanged. This implies the complete elimination of argm from SCSNA. Under
the above transformations, (4.2d) is rewritten as

Y (1, ζ ) = f�
(|m| +√αrζ + γ Y (1, ζ ), c.c.

)
(4.8)
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with the help of (4.5). Here it is significant to note that the right-hand side of (4.7) must be a
positive real number. This gives a condition to determine�.

Finally, recall the restriction of the outputY , |Y | = 1. Although (4.8) is a complex
equation, this can be replaced by a real equation by introducing a new variableψ(ζ ) ≡
argY (1, ζ ). Consequently, the present SCSNA equations are summarized as

|m| = 1

π

∫
e−|ζ |

2
eiψ(ζ )dζ (4.9a)

U
√
αr = 1

π

∫
e−|ζ |

2
ζ ∗eiψ(ζ )dζ (4.9b)

ψ(ζ ) = g (|m| +√αrζ + γ exp[iψ(ζ )]
)−� (4.9c)

γ = α

1− U (4.9d)

r = |1− U |−2. (4.9e)

Here the transfer functiong( )

g(h) = argh− c ln |h| (4.10)

has been defined. The above equations contain four unknown variables,|m|, � and the real
and imaginary parts ofU for a set of given control parameters(c, α).

4.3. Mapping criterion

Equation (4.9c) may, generally, have several solutions ofψ(ζ ). In this situation, it is
indispensable to determine which solution is realized in SCSNA. Shiino and Fukai determined
the solution by using the so-called Maxwell rule in their original SCSNA. This is an inference
from the minimization of the free energy. However, the Lyapunov function (the free energy
in a non-stochastic system) does not exist in our model. Hence we need to develop another
criterion to single out the relevant solution in (4.9c).

We propose the criterion as follows. We assume that if the system is on a fixed-point
attractor, all the variables in SCSNA except a microscopic variableψ(ζ ) are constant. For
example, in (4.9c), the constant variables arem, r, γ , � and another microscopic variable
ζ . Our idea is to focus on the dynamical stability of the fixed point ofψ(ζ ). Under this
assumption, a specifiedζ in the SCSNA representation corresponds with a specified oscillator
in the simulation representation. Consequently, we can regard equation (4.9c) at a specifiedζ
as that governing the dynamics of a corresponding oscillator:

ψn+1(ζ ) = g
(|m| +√αrζ + γ exp[iψn(ζ )]

)−�. (4.11)

According to the one-dimensional map theory, we impose the following criterion upon SCSNA
(themapping criterion):

• Stability of an oscillator: for a fixedζ , ψ(ζ ) is the stable solution of (4.11) if| dg (h)dh | < 1
is satisfied atψ(ζ ). If there are several stable solutions, theψ(ζ ) is realized at which
| dg (h)dh | is smallest.
• Stability of the system: the overall measure with no stable solution should satisfy the

condition
1

π

∫
no stable solution

e−|ζ |
2
dζ � 1. (4.12)

The left-hand side of (4.12) is interpreted as the magnitude of the (deterministic) noise added
to the fixed-point solution of SCSNA. It is beyond SCSNA to estimate the magnitude in which
the system remains stable. This criterion is a necessary condition for a system with a large
degree of the freedom to remain stable.
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5. Results

5.1. Solution of the SCSNA equations

First, we briefly explain the numerical algorithm used to solve the SCSNA equations. It consists
of three nested loops. The outermost loop is for the convergence of the root of the coupled
equations of the SCSNA. To find the root, we used the multiple Newton method. The next
loop is for the convergence of the numerical integration. It is necessary to know the integrated
values at every iteration step of the multiple Newton method. There are twenty integrations in
all, namely the real and imaginary parts of the right-hand sides of both (4.9a) and (4.9b) and
their derivatives by the four macroscopic variables (4 + 42 = 20). We used the trapezoidal
integration rule without any integral transformation. The total number of reference points for
the numerical integration is typically O(106). The innermost loop is for the convergence of
the solution of (4.9c). For this, we used the Newton method for a single variable. After the
third convergence, the mapping criterion is applied at each reference pointζ .

Now we report the result of the SCSNA calculation. Without loss of generality,c is chosen
to be positive. In figure 3, we depict them− α curves of the SCSNA solution for three values
of c. Note that only the curve forc = 0 is predictable from the replica theory. This result
reveals that, even forc 6= 0, the transition behaviours are the same as forc = 0. The storage
capacityαc is given by theα value where d|m|/dα diverges. For differentc values, one obtains
αc–c curves. The phase diagram of the system showing the retrieval and non-retrieval regions
is shown in figure 4. One observes that, nearc = 0, the storage capacity is more enhanced
when there exists no Lyapunov function (c 6= 0) than when the function does exist (c = 0).
Further increase ofc results in the vanishing ofαc. The increase ofαc nearc = 0 seems to be
a paradoxical result.

This paradoxical result can be interpreted as follows. As one can see in (4.10), the
argument ofh can be neglected for large|c|. In view of the local fieldh, large|c| deforms
our oscillator neural network into a kind of analogue neural network. Thus the deviation
of c from zero changes the storage capacity of this model from 0.037 7 (Noest model) to

Figure 3. Dependences of the overlapm on the loading rateα for some fixedc. These are solutions
of a set of SCSNA equations. Each curve has two branches, which vanish simultaneously atαc. In
the case ofc = 0 where the system has a Lyapunov function, the branch with larger|m| corresponds
to its minimum and the other, to the maximum.
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Figure 4. Analytically predicted phase diagram. The storage capacityαc(c) is determined as in
figure 3. The letters R and N denote retrieval and non-retrieval regions, respectively. Particularly
in the vicinity of c = 0, it is clear thatαc(c) increases withc.

possibly 0.138 (Hopfield model at zero temperature). On the other hand, it is expected
that αc decreases asymptotically to zero in the limitc → ∞, because the extremely large
c enhances the dynamical instability of the retrieval solution. Although these two tendencies
competitively contribute, the SCSNA result illustrates that the former overcomes the latter in
the neighbourhood ofc = 0.

5.2. Numerical simulations

5.2.1. Macroscopic variables.Numerical simulation is carried out forN = 500, and how
the four macroscopic variables depend upon(c, α) is examined. The overlapmn at timen is
governed by (3.1) with the help ofθ(j)n (j = 1, . . . , N). In the same way, the susceptibility
Un is calculated from (B.7) and (B.15). Taking into account (3.1) and (4.4), we define the
frequency�n by

�n = arg(mn/mn−1).

In general, these variables do not necessarily converge to finite values in the course of time.
Furthermore, the attractor depends on the initial phases besides the parametersc and α.
Therefore, for fixed parameters, we took the time average of the variables for the different
100 initial conditions after the transients have decayed. We then derived the ensemble average
from these time averages. The initial value ofθ0 is set to be one of the embedded patterns,
namely,|m0| to be exactly equal to unity. If the overlap decays (|m| ∼ 0), the trial fails to a
non-retrieval solution; otherwise the state corresponds to the retrieval of a periodic solution,
following (4.4).

The results are shown in figure 5. In figure 5(a), the dark area shows the numerically
obtained retrieval region and the light area, the non-retrieval one. The dashed curve in
figure 5(a) is a part of the curve in figure 4. It lies precisely on the boundary of the two
regions, nearc = 0. This proves that SCSNA gives quantitatively good prediction of the
simulation data for smallc. On the other hand, the simulation data show the peak ofαc at
c ' 1 and the rapid contraction of the retrieval region forc & 1. The numerically obtained
retrieval region is within that derived by SCSNA. In order to clarify to what extent SCSNA is
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Figure 5. Numerically obtained macroscopic variables. Simulation was carried out forN = 500,
and the average over different 100 runs is shown for (a) |m| and (b)�. (a) The numerically obtained
phase diagram. For comparison, the result in figure 4 is superimposed on (a) by the dashed curve.
The greyscale range in (b) is adjusted so as to emphasize the dependence within the retrieval region.

successful, we plotm–α curves with simulation data in figure 6. One can see the coincidence
between theory and simulation forc = 0. This figure makes it clear that the coincidence
nearαc declines with the increase ofc. The finite value ofc induces the complex dynamics
of the system. Since SCSNA does not include the effect of the dynamical correlations, the
discrepancy between the SCSNA result and the numerical simulation becomes remarkable for
largec.

5.2.2. Mapping criterion. Now let us verify the validity of the mapping criterion for the
simulation withN = 1000. At first, we numerically sought a fixed-point solution. We
calculated the stationary values of macroscopic variables from such a solution. With the help
of these values, we translate the simulation data into a form suitable for SCSNA representation,
and obtain the set ofψ(j) andζ (j) (j = 1, . . . , N). A realization forc = 1.0 andα = 0.04
yields figure 7(a), in whichψ(j) are plotted on theζ plane.

The distribution of the noise has been normalized through (4.9e). Thus, it is certainly
expected that most of the points are inside|ζ (j)| = 1 for N = 1000. ForN → ∞, the
blank area in figure 7(a) vanishes. On the other hand, with the help of the same macroscopic
variables, the mapping criterion makes (4.9c) a function ofζ , and produces figure 7(b), which
should be compared with figure 7(a). If c = 0,ψ(ζ ) is merely along the direction of the local
field, namely, the curvesψ(ζ ) = const. are aligned radially with the centreζ = −|m|/√αr.
Thus, ifc 6= 0, the above radial arrangement is distorted and forms a spiral as in figure 7(b); the
small blank region corresponds to the singular region in which the mapping criterion predicts
no stableψ(ζ ). We point out that this region is far fromζ = 0 and that condition (4.12) is
satisfied. However, a comparison of figures 7 (a) and (b) shows that this region is not covered
by the simulation withN = 1000. It is difficult to actually observe a phenomenon related to
the singularity.

Another realization forc = 1.5 andα = 0.01 is plotted in figure 8. In this example, the
equilibrium state is unfortunately, classified, to the so-called spurious state. This is beyond
the present SCSNA; hence the distribution of the noise is not well normalized. Nevertheless
the mapping criterion works successfully. Consequently, because figure 8(a) qualitatively
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Figure 6. Comparison ofm–α curves by SCSNA approximation with numerical simulations for
(a) c = 0.0 and (b) c = 1.0. The symbol (♦) stands for the mean value of|m|, and the error bar
indicates the range numerically obtained. It is inevitable, due to the finite-size effect of the system,
that the drastic transition aroundαc does not appear in simulation data.

coincides with the centre parts of both figures 7(b) and 8(b),ψ(ζ ) determined by the mapping
criterion seems to be consistent with that obtained by simulation.

6. Concluding remarks

We extended SCSNA to the analysis of the oscillator neural network without Lyapunov
function, and developed a mapping criterion that is an intrinsic rule to determine a fixed-
point solution of the system concerned. In our formulation, it is a remarkable finding that the
spontaneous frequency� is involved in SCSNA as one of the macroscopic variables. If we
select a transfer function different from (2.1c), we can analyse the model by almost the same
approach as long as the function has rotation symmetry.

We make some remarks about the mapping criterion. This criterion becomes plausible
under the condition that the system is described not by differential equations, but by coupled
maps, and moreover that the transfer function is not a linear combination of step-functions.
Accordingly, in the case of the analogue neural network model withf (h) = tanh(βh)hεR),
SCSNA with our mapping criterion yields the same result known so far.
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Figure 7. Validity of mapping criterion forc = 1.0 andα = 0.04. (a) Result of the simulation for
N = 1000. Outputψ(ζ ) is drawn by greyscale as a function of noiseζ = ξ + iη. All the variables
were obtained by a numerical simulation, and translated into a form suitable for SCSNA. Note
that the finite size simulation allows for blank regions that have no data. (b) Result of mapping
criterion. Outputψ(ζ ) is determined by the mapping criterion with the help of the macroscopic
variables that were numerically obtained in (a).

Figure 8. Validity of mapping criterion forc = 1.5 andα = 0.01. The coincidence between (a)
and (b) is qualitatively good even in this extraordinary example.

We have adopted this static method to the GL map neural network, and have obtained
results that explain numerical simulation quite well forc < 1.0. However, we did not succeed
in predicting the parameter dependences forc & 1.0. The discrepancy becomes more enhanced
as|c| is increased. The lack of the Lyapunov function forc 6= 0 does not ensure the stability of
the fixed-point solution of macroscopic variables even though SCSNA predicts the existence
of the solution. The slight deviation ofc from zero must cause the dynamical correlations in its
dynamics, and the stable fixed-point solution atc = 0 bifurcates into an unstable fixed-point
one and a stable periodic one. For a smallc value, they are extremely close in the macroscopic
variable space, but the distance between them does not remain negligible for largec. From
these observations, we conclude that the SCSNA approximation is effective to explore only the
unstable fixed-point solution forc 6= 0, and is not practical unless the intrinsic solution stays in
the vicinity of the unstable one. In order to understand the whole structure of the phase diagram,
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we could use dynamical theory [24,25], taking into account the dynamical correlations of the
macroscopic variables. This is now under consideration, and will be reported elsewhere.

Appendix A. Signal-to-noise analysis

We set the initial valuesθ0 = φ1. Then the local fields atn = 0 are calculated as

h
(j)

0 =
N∑
k=1

Jjke
iφ(k)1 = eiφ(j)1 +

1

N

N∑
k 6=j

p∑
µ=1

ei(φ(j)µ −φ(k)µ +φ(k)1 )

where we used (2.2). The first term is called thesignal and the second thenoise termof
O(
√
α), with the help ofα = p/N . Updating with these local fields gives

eiθ(j)1 = f (eiφ(j)1 , c.c.) +

[
∂f (h, h∗)
∂h

O(
√
α) +

∂f (h, h∗)
∂h∗

O(
√
α)

]∣∣∣∣
h=eiφ(j)

= eiφ(j)1 + O(
√
α)

because of (2.1a), (2.1c) and (2.4). Thus, if the loading rateα is small enough to neglect the
second and third terms in the above, pattern 1 recovers from the disturbance generated by the
embedding of the other patterns.

Appendix B. Derivation of the complex SCSNA

In this appendix, we extend SCSNA [23] such that the overlap is a complex variable.
Throughout this paper we are concerned with the case ofN → ∞. When the state of the
system is in an embedded patternµ = 1 such as (4.1), the overlaps satisfy

|m1
n| = O(1) |mµn | = O(N−1/2) for µ > 2. (B.1)

Hereafter, we restrict ourselves to dealing with the fixed-point state, and the subscriptn is
neglected. With the use of the overlaps, the local field is written as the sum of the signal and
the noise terms as

h(j) = eiφ(j)1 m1 +
p∑

µ>2

eiφ(j)µ mµ.

The SCSNA procedure begins with the decomposition of the noise term into the systematic
partγeiθ(j) and the pure noise partz(j):

p∑
µ>2

eiφ(j)µ mµ = z(j) + γeiθ(j) . (B.2)

Since the updating through the above local field leads to the same solution, the next equation
holds:

eiθ(j) = f (eiφ(j)1 m1 + z(j) + γeiθ(j) , c.c.). (B.3)

This can be regarded as the equation determining eiθ(j) . We assume that this can be formally
solved as

eiθ(j) = f̃ (eiφ(j)1 m1 + z(j), c.c.). (B.4)

The combination of (3.1) and (B.4) yields

m1 = 1

N

N∑
j

e−iφ(j)1 f̃ (eiφ(j)1 m1 + z(j), c.c.). (B.5)
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The subsequent step is to self-consistently determineγ and the statistics ofz(j). Initially
we concentrate on a specific patternν(6= 1). The pure noise contains a small signal proportional
to the patternν and the remaining term as

z(j) = eiφ(j)ν mν + z(j),ν (ν 6= 1).

Note that bothz(j) andz(j),ν are O(N−1/2) and that the physical difference between them could
be neglected in the limitN →∞. mν is calculated according to the definition, and is expanded
up to the first order ofmν as

mν = 1

N

N∑
j

e−iφ(j)ν f̃ (eiφ(j)1 m1 + eiφ(j)ν mν + z(j),ν, c.c.)

= 1

N

N∑
j

e−iφ(j)ν

[
f̃ (h, h∗) + eiφ(j)ν mν

∂f̃ (h, h∗)
∂h

+ e−iφ(j)ν mν∗
∂f̃ (h, h∗)
∂h∗

]∣∣∣∣∣
h=eiφ

(j)
1 m1+z(j),ν

.

Taking the complex conjugate, we get a coupled linear equation(
Aν −Bν
−Bν∗ Aν∗

)(
mν

mν∗

)
=
(

1
N

∑N
j e−iφ(j)ν f̃

1
N

∑N
j eiφ(j)ν f̃ ∗

)
(B.6)

where we define

Aν = 1− 1

N

N∑
j

∂f̃ (h, h∗)
∂h

∣∣∣∣
h=eiφ

(j)
1 m1+z(j),ν

(B.7)

Bν = 1

N

N∑
j

e−2iφ(j)ν ∂f̃ (h, h
∗)

∂h∗

∣∣∣∣
h=eiφ

(j)
1 m1+z(j),ν

. (B.8)

The solution of (B.6) is given by

mν = Aν∗

(|Aν |2 − |Bν |2)N
N∑
j

e−iφ(j)ν f̃ +
Bν

(|Aν |2 − |Bν |2)N
N∑
j

eiφ(j)ν f̃ ∗.

The randomness ofφ(j)ν yields the estimations asAν = O(1)andBν = O(N−1/2), and therefore

mν = 1

AνN

N∑
j

e−iφ(j)ν f̃ (eiφ(j)1 m1 + z(j),ν, c.c.) (ν 6= 1).

Here taking the limitN →∞ allows us to replacez(j),ν by z(j). ThenAν does not depend
on the pattern indexν, which is written asA. Substituting it to the left-hand side of (B.2), we
get the equation
p∑

µ>2

eiφ(j)µ mµ = 1

AN
∑
µ>2

f̃ (eiφ(j)1 m1 + z(j), c.c.)

+
1

AN

N∑
k 6=j

∑
µ>2

ei(φ(j)µ −φ(k)µ )f̃ (eiφ(k)1 m1 + z(k), c.c.)

= α

A
eiθ(j) +

1

AN

N∑
k 6=j

∑
µ>2

ei(φ(j)µ −φ(k)µ )f̃ (eiφ(k)1 m1 + z(k), c.c.).
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Comparing the above with the right-hand side of (B.2), we obtain

γ = α

A
(B.9)

z(j) = 1

AN

N∑
k 6=j

∑
µ>2

ei(φ(j)µ −φ(k)µ )f̃ (eiφ(k)1 m1 + z(k), c.c.). (B.10)

Equation (B.10) enables us to approximately determine the distribution of random variable
z(j).

The site average ofz(j), 1
N

∑N
j=1 z

(j), obviously vanishes, and its variance is given by

σ 2 ≡ 1

N

N∑
j=1

z(j)z(j)∗ = 1

|A|2N3

N∑
j=1

N∑
k 6=j

p∑
µ>2

|f̃ (eiφ(k)1 m1 + z(k), c.c.)|2 = α

|A|2q (B.11)

where we introduced a macroscopic variable

q = 1

N

N∑
j=1

|f̃ (eiφ(j)1 m1 + z(j), c.c.)|2. (B.12)

From (B.10), it is easy to prove the isotropy of the distribution ofz(j) = x(j) + i y(j)

1

N

N∑
j=1

x(j)y(j) = 0
1

N

N∑
j=1

(x(j))2 = 1

N

N∑
j=1

(y(j))2.

This means, because of the central limit theorem, thatz(j) is well approximated by the Gaussian,
therefore the probability distribution takes the form Pr(z) ∼ exp(−|z|2/σ 2).

Let us turn to how to calculate the functioñf . For this purpose we define a renormalized
outputY by

Y (eiφ(j)1 , z(j)) ≡ f̃ (eiφ(j)1 m1 + z(j), c.c.).

Substituting this into (B.3), we get the relation

Y (eiφ(j)1 , z(j)) = f (eiφ(j)1 m1 + z(j) + γ Y (eiφ(j)1 , z(j)), c.c.). (B.13)

Hencef̃ is determined such thatY satisfies (B.13).
Finally, we assume the self-averaging property, which means that the average over all sites

can be replaced by the ensemble average over both patternφ and noisez, i.e.,

1

N

N∑
j=1

· · · −→ 〈〈· · ·〉〉.

Note that〈〈· · ·〉〉 is the same as that given in (4.3). We neglect the correlation among the
randomness of patterns and noises. After the transformation

r = σ 2α (B.14)

U = 1−A (B.15)

ζ = z

σ
(B.16)

equations (B.5), (B.7), (B.9) and (B.11)–(B.13) are the complex version of a set of SCSNA
equations (4.2a)–(4.2f). Note that we adoptU as a macroscopic variable. BecauseU is
originally the sum of random variables as well asm, we should pay attention to whether it has
a finite value or not. For the transfer function (2.1c), U is readily estimated to be O(1) (see
appendix C).
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Appendix C. Order estimations of macroscopic variables

Let us estimate the magnitude ofU for transfer function (2.1c). From (B.7) and (B.15),U is
calculated by

U = 1

N

N∑
j

∂f̃ (h, h∗)
∂h

∣∣∣∣
h=eiφ

(j)
1 m+z(j)

.

The introduction of local fieldh′ = e−iφ(j)1 h leads to

U = 1

N

N∑
j

e−iφ(j)1
∂f̃ (eiφ(j)1 h′, e−iφ(j)1 h′∗)

∂h′

∣∣∣∣
h′=m+z(j)e−iφ

(j)
1

= 1

N

N∑
j

∂f̃ (h′, h′∗)
∂h′

∣∣∣∣
h′=m+z(j)e−iφ

(j)
1

. (C.1)

Here we used (2.3). Because of the isotropy of the noisez, transforming the noise to
z′(j) = z(j)e−iφ(j)1 makes no change in the calculation ofU . Therefore all the local fields
h(j) (j = 1, . . . , N) have common signalm = O(1) and site-dependent small noisez′ (j).
TheN local fields with nearly same value give nearly same contributions toU . Taking into
account the normalization factor 1/N , we consequently findU estimated in O(1). In the same
way, the overlapm is calculated from (B.5) as

m = 1

N

N∑
j

f̃ (m + z(j)e−iφ(j)1 , c.c.). (C.2)

According to the above discussion,m is O(1), too. This result ensures the assumption (B.1).
Equations (4.6a) and (4.6b) are identical to the integral forms of (C.2) and (C.1), respectively.
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